
Hardness Results for Intersection Non-Emptiness

Michael Wehar

University at Buffalo

mwehar@buffalo.edu

January 16, 2015

Abstract

We carefully reexamine a construction of Karakostas, Lipton, and Vi-

glas (2003) to show that the intersection non-emptiness problem for DFA’s

(deterministic finite automata) characterizes the complexity class NL. In

particular, if restricted to a binary work tape alphabet, then there exist con-

stants c1 and c2 such that for every k intersection non-emptiness for k DFA’s

is solvable in c1k log(n) space, but is not solvable in c2k log(n) space. We

optimize the construction to show that for an arbitrary number of DFA’s

intersection non-emptiness is not solvable in o(n
log(n) log(log(n))) space. Fur-

thermore, if there exists a function f(k) = o(k) such that for every k in-

tersection non-emptiness for k DFA’s is solvable in nf(k) time, then P 6=
NL. If there does not exist a constant c such that for every k intersection

non-emptiness for k DFA’s is solvable in nc time, then P does not contain

any space complexity class larger than NL.

1 Introduction

Let A denote a class of machines. The intersection non-emptiness problem for

A, denoted by IEA, consists of all finite lists of machines in A whose underlying

languages have a non-empty intersection. By fixing the number of machines in the

input to k, one obtains intersection non-emptiness for k machines which we denote

by k-IEA. Intersection non-emptiness problems can be motivated by the following

scenario. Consider that you are trying to construct an object x for a particular

application. You propose a finite list of conditions for x to satisfy such that each

1

2 Michael Wehar

condition can be decided by a machine in A. An algorithm that solves intersection

non-emptiness for A provides a method for checking if there exists an object x

satisfying the proposed conditions.

Let IED denote the intersection non-emptiness problem for DFA’s. One can

solve IED by checking reachability in a product machine. Given an input consist-

ing of k machines each of size at most m, the product machine has size at most

mk. Therefore, checking reachability takes at most mO(k) time. Is it possible to

solve IED more efficiently? In [5], it was shown that IED is PSPACE-complete.

Consider restricting the number of machines in the input of IED by a function

g(n) where n is the total input length. In [6], it was shown that if g(n) is sublinear

and log-space-constructible, then such a restriction yields a complete problem for

NSPACE(g(n) log(n)). In [4], it was shown that the existence of a more efficient

algorithm for IED would imply a separation result. In particular, if there exists a

function f(k) = o(k) such that IED is solvable in m1 ·mf(k)
2 time where m1 is the

size of a designated largest machine and all other machines have size at most m2,

then NL 6= P.

In this paper, we carefully reexamine and optimize the construction from [4]

in order to prove new results. We show that if restricted to a binary work tape

alphabet, then there exist constants c1 and c2 such that for every k, k-IED ∈
NSPACE(c1k log(n)) and k-IED /∈ NSPACE(c2k log(n)). Then, we introduce an

optimized construction to show that IED /∈ NSPACE(o(n
log(n) log(log(n))

)). Finally,

we combine these results with a diagonalization argument to show that if there

exists a function f(k) = o(k) such that for every k, k-IED ∈ DTIME(nf(k)), then

P 6= NL. If there does not exist a constant c such that for every k, k-IED ∈
DTIME(nc), then NSPACE(f(n)) * P for all f(n) = ω(log(n)) such that f is

space-constructible.

2 Notation and Conventions

The input for IED is an encoding of a finite list of DFA’s. For each encoding, n will

denote the length and k will denote the number of machines that are represented.

For each natural number k, k-IED denotes a restriction of the IED problem such

that we only accept inputs that encode at most k machines.

Whenever we use the term Turing machine, we refer to a deterministic or

non-deterministic machine with a two-way read only input tape and a two-way

Hardness Results for Intersection Non-Emptiness 3

read/write work tape. For our purposes, we will only consider Turing machines

where the work tape alphabet is binary. A work tape over a binary alphabet will

be referred to as a binary work tape. A cell on a binary work tape will be referred

to as a bit cell.

For each k, there are acceptance problems for space and time bounded Turing

machines denoted by NS
k log and DT

nk , respectively. NS
k log refers to the problem where

we are given an encoding of a non-deterministic Turing machine M with a binary

work tape and an input s. We accept (M, s) if and only if M accepts s using at most

k log(n) work tape bit cells where n denotes the length of s. DT
nk is defined similarly

for nk deterministic time. We denote by NSPACE2(h(n)) the set of problems

solvable by a non-deterministic Turing machine using at most h(n) work tape bit

cells. Such classes are used to measure the binary space complexity of problems

[2]. We associate NS
k log with NSPACE2(k log(n)) and DT

nk with DTIME(nk).

3 Binary Space Complexity

We introduce a function SNL(k) that measures the actual space complexities of the

NS
k log problems. In particular, SNL(k) is defined as follows:

SNL(k) := min{ d ∈ N | NS
k log ∈ NSPACE2(d log(n)) }. (1)

In this section, we sketch how one could apply standard techniques from the

space hierarchy theorem to prove that there exist constants c1 and c2 such that for

every k sufficiently large, NS
k log ∈NSPACE2(c1k log(n)) and NS

k log /∈NSPACE2(c2k log(n)).

Using the function SNL(k), we express this result as SNL(k) = Θ(k).

Proposition 1. SNL(k) = O(k).

Sketch of proof. Using the simulation found in any common proof of the space

hierarchy theorem, one shows that NS
log ∈ NL. Further, one shows SNL(k) = O(k)

by using padding to reduce NS
k log to NS

log for every k.

Proposition 2. SNL(k) = Ω(k).

Sketch of proof. Using the standard diagonalization argument found in any

common proof of the non-deterministic space hierarchy theorem, one shows SNL(k)

= Ω(k). Notice that in order to carry out the diagonalization one needs to show

4 Michael Wehar

there exists c such that for all k,

NSPACE2(k log(n)) ⊆ co -NSPACE2(ck log(n)). (2)

First, one applies the result NL = co -NL to show that there exists c such that

NS
log ∈ co -NSPACE2(c log(n)). Further, one shows (2) by using padding to reduce

NS
k log to NS

log for every k.

Corollary 3. SNL(k) = Θ(k).

4 Reductions

We introduce a function SIE(k) that measures the actual space complexities of the

k-IED problems. In particular, SIE(k) is defined as follows:

SIE(k) := min{ d ∈ N | k-IED ∈ NSPACE2(d log(n)) }. (3)

In this section, we carefully reexamine the construction from [4] to show that

there exist constants c1 and c2 such that for every k sufficiently large, k-IED

∈ NSPACE2(c1k log(n)) and k-IED /∈ NSPACE2(c2k log(n)). Using the function

SIE(k), we can express this result as SIE(k) = Θ(SNL(k)) = Θ(k).

Proposition 4. SIE(k) = O(k).

Sketch of proof. As was previously discussed, one can solve IED by checking

reachability in a product machine. A state of the product machine can be stored

as a string of k log(n) bits. Given such a state, we can non-deterministically guess

which state comes next. There exists a path from an initial state to a final state

if and only if there exists a path from an initial state to a final state of length

at most nk. Therefore, k-IED is solvable using at most ck log(n) bits for some

constant c.

Theorem 5. SIE(k) = Ω(SNL(k)).

Proof. We will describe a reduction from NS
k log to k-IED. Then, we will discuss

encoding details to show that this is a log-space reduction.

Let a k log(n) space bounded non-deterministic Turing machine M of size nM

and an input string s of length ns be given. Together, an encoding of M and s

Hardness Results for Intersection Non-Emptiness 5

represent an arbitrary input for NS
k log. Let n denote the total size of M and s

combined i.e. n := nM + ns.

Our first task is to construct k DFA’s, denoted by < Di >i∈[k], each of size

at most p(n) for some fixed polynomial p such that M accepts s if and only if⋂
i∈[k] L(Di) is non-empty. The DFA’s will read in a string that represents a com-

putation of M on s and verify that the computation is valid and accepting. The

work tape of M will be split into k sections each consisting of log(ns) sequential

bits of memory. The ith DFA, Di, will keep track of the ith section and verify that

it is managed correctly. In addition, all of the DFA’s will keep track of the input

and work tape head positions. We will achieve a better simulation in Theorem 7

where we split up the management of the tape head positions to separate DFA’s.

The following two concepts are essential to our construction.

A section i configuration of M is a tuple of the form

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form

(state, input position, work position, write bit).

The states of Di are identified with section i configurations. The alphabet char-

acters are identified with forgetful configurations. Intuitively, Di reads in forgetful

configurations that represent where to move the tape heads next and how the

current bit cell should be manipulated.

Formally, the transitions for the DFA Di are defined as follows. Let a forgetful

configuration a and section i configurations r1 and r2 be given. It’s possible that

either the work tape position of r1 is in the ith section, or the work tape position is

in another section. In the first case, there is a transition from state r1 with alphabet

character a to state r2 if (1a) going from r1 to r2 represents a valid transition of M

on input s, (1b) the ith section of r2 appropriately changes according to the write

bit of a, and (1c) a and r2 agree on state, input position, and work position. In the

second case, there is a transition from state r1 with alphabet character a to state

r2 if (2a) r1 and r2 agree on the ith section of the work tape, and (2b) a and r2

agree on state, input position, and work position.

We assert without proof that for every string x, x represents a valid accepting

computation of M on s if and only if x ∈
⋂

i∈[k] L(Di). Therefore, M accepts s if

6 Michael Wehar

and only if
⋂

i∈[k] L(Di) is non-empty.

We show that the Di’s have size at most p(n) for some fixed polynomial p. Each

Di consists of a start state, a list of final states, and a list of transitions where

each transition consists of two states and an alphabet character. Each state is

represented by a section i configuration and each alphabet character is represented

by a forgetful configuration. Therefore, in total there are nM ·ns · k log(ns) · 2log(ns)

section i configurations and nM ·ns ·k log(ns) forgetful configurations. Hence, there

exists a fixed two variable polynomial q such that each Di has size at most q(n, k).

Since k is fixed, one can blow up the degree of q to get a polynomial p such that p

doesn’t depend on k and each Di has size at most p(n).

It should be clear from the preceding that there is a fixed polynomial t(n) such

that for every k, NS
k log is t(n)-time reducible to k-IED. However, we want to show

that there is a constant c such that for every k, NS
k log is c log(n)-space reducible to

k-IED. We accomplish this by describing how to print the string encoding of the

Di’s to an auxiliary write only output tape using at most c log(n) space for some

constant c.

We will describe how to print the transitions for each Di and leave the remaining

encoding details to the reader. We use a bit string i to represent the current DFA

and two bit strings j1 and j2 to represent section i configurations. We iterate

through every combination of i, j1, and j2. If Di has a transition from j1 to j2,

then we print (i, j1, a, j2) where a is the forgetful configuration that agrees with

j2. We assert that checking whether to print (i, j1, a, j2) requires no more than

d log(k) + d log(n) bits for some constant d. Therefore, in printing the encoding of

the Di’s, we use no more than c log(k) + c log(n) bits for some constant c. For each

k, when n is sufficiently large, the log(k) term goes away. It follows that for every

k, NS
k log is c log(n)-space reducible to k-IED.

Corollary 6. SIE(k) = Θ(SNL(k)) = Θ(k).

Proof. By Corollary 3, we have SNL(k) = Θ(k). Applying Proposition 4 and

Theorem 5, we get that SIE(k) = Θ(SNL(k)) = Θ(k).

Theorem 7. IED /∈ NSPACE(o(n
log(n) log(log(n))

)).

Proof. By the non-deterministic space hierarchy theorem, we may choose a

problem Q such that Q ∈ NSPACE(n), but Q /∈ NSPACE(o(n)). Choose c ∈ N
and a non-deterministic Turing machine M that solves Q using at most cn bit cells.

Hardness Results for Intersection Non-Emptiness 7

We optimize the construction from the proof of Theorem 5 to show that if IED

∈ NSPACE(o(n
log(n) log(log(n))

)), then Q ∈ NSPACE(o(n)). Since we know that Q /∈
NSPACE(o(n)), it follows that IED /∈ NSPACE(o(n

log(n) log(log(n))
)).

Let an input string s for M of length n be given. Our task is to construct (c+1)·n
DFA’s each with at most d log(n) states for some constant d such that M accepts

s if and only if the DFA’s have a non-empty intersection. The DFA’s will read in a

bit string that represents a computation of M on s and verify that the computation

is valid and accepting. In this construction, we split up the management of the

tape head positions to separate DFA’s. There are n DFA’s, denoted by < Ii >i∈[n],

that manage the input tape and there are cn DFA’s, denoted by < Wi >i∈[cn], that

manage the work tape. The following concept is essential to our construction.

An informative configuration of M is a tuple of the form

(state, input position, current input bit, work position, current work bit).

The DFA’s will read in a sequence of informative configurations that are encoded as

bit strings. In contrast to the previous construction, the DFA’s will have a binary

input alphabet.

Each DFA is assigned to manage a bit position of either the input tape or work

tape. Each Ii stores the ith input tape bit and operates as follows. It reads each

informative configuration and checks if it represents the input position i. If it does

not, then it ignores the informative configuration and moves on to the next one.

However, if it does represent the input position i, then it checks that the stored bit

matches the current input bit and uses the current work bit to check that the input

position and state validly transition to the next informative configuration. Each

Wi stores the ith work tape bit and operates as follows. It reads each informative

configuration and checks if it represents the work position i. If it does not, then it

ignores the informative configuration and moves on to the next one. However, if it

does represent position i, then it checks that the stored bit matches the current work

bit and uses the current input bit to both modify the stored bit and check that the

work position and state validly transition to the next informative configuration.

It’s important to remark that DFA’s for boundary positions such as I1, In, W1,

and Wcn cannot allow the input position or work position to go outside [n] or [cn],

respectively.

We assert without proof that for every bit string x, x represents a valid accepting

computation of M on s if and only if x ∈
⋂

i∈[n] L(Ii) and x ∈
⋂

i∈[cn] L(Wi).

8 Michael Wehar

Therefore, M accepts s if and only if there exists a string x such that x ∈
⋂

i∈[n] L(Ii)

and x ∈
⋂

i∈[cn] L(Wi).

A DFA with log(cn) states can be constructed to recognize a fixed binary num-

ber i ∈ [cn]. Since a tape position i could only transition to i − 1, i, or i + 1 in

one step, it follows that a DFA with d log(n) states for some constant d can be

constructed to check the validity of transitioning to the next informative config-

uration. Therefore, we can construct each DFA with at most d log(n) states for

some constant d.

We described how to construct (c + 1) · n DFA’s each with at most d log(n)

states for some constant d whose intersection is non-empty if and only if M

accepts s. Since the total length of the string encoding of < Ii >i∈[n] com-

bined with < Wi >i∈[cn] is at most n log(n) log(log(n)), it follows that IED ∈
NSPACE(o(n

log(n) log(log(n))
)) implies Q ∈ NSPACE(o(n)). We obtain the desired

result because Q /∈ NSPACE(o(n)).

5 Space vs Time

We introduce functions RNL(k) and RIE(k) that measure the actual time complexi-

ties of NS
k log and k-IED, respectively. In particular, RNL(k) and RIE(k) are defined

as follows:

RNL(k) := min{ d ∈ N | NS
k log ∈ DTIME(nd) } (4)

RIE(k) := min{ d ∈ N | k-IED ∈ DTIME(nd) }. (5)

In this section, we show that if there exists a function f(k) = o(k) such that

for every k, NS
k log ∈ DTIME(nf(k)), then P 6= NL. Using the function RNL(k) we

can express this result as if RNL(k) = o(k), then P 6= NL. Notice that by using

the reduction from Theorem 5, we also have RIE(k) = Θ(RNL(k)). It follows that

if RIE(k) = o(k), then P 6= NL.

Proposition 8. RIE(k) = Θ(RNL(k)).

Theorem 9. If RNL(k) = o(k), then NL 6= P.

Proof. Suppose that NL = P. Since DT
n ∈ P, we have DT

n ∈ NL. Choose

d ∈ N such that DT
n ∈ NSPACE2(d log(n)). Further, by using padding to reduce

DT
nk to DT

n for every k, one can show that there exists d ′ such that for all k, DT
nk

Hardness Results for Intersection Non-Emptiness 9

∈ NSPACE2(d ′k log(n)). Choose such a constant d′ satisfying for all k, DT
nk ∈

NSPACE2(d ′k log(n)).

Suppose for sake of contradiction that RNL(k) = o(k). By Proposition 2, we

may choose c such that for all k sufficiently large

NS
k log /∈ NSPACE2(

⌊
k

c

⌋
log(n)). (6)

Since RNL(k) = o(k), for all k sufficiently large

RNL(k) <

⌊
k

cd ′

⌋
. (7)

Choose m satisfying NS
m log /∈ NSPACE2(

⌊
m
c

⌋
log(n)) and RNL(m) <

⌊
m
cd ′

⌋
. There-

fore,

NS
m log ∈ DTIME(o(nb

m
cd ′ c)). (8)

Since DT
nk ∈ NSPACE2(d ′k log(n)) for all k,

DT

nb m
cd ′ c ∈ NSPACE2(d′

⌊ m

cd ′

⌋
log(n)) ⊆ NSPACE2(

⌊m
c

⌋
log(n)). (9)

Since we can trivially reduce every problem in DTIME(o(nb
m
cd ′ c)) to DT

nb m
cd ′ c ,

NS
m log ∈ DTIME(o(nb

m
cd ′ c)) ⊆ NSPACE2(

⌊m
c

⌋
log(n)) (10)

which is a contradiction because NS
m log /∈ NSPACE2(

⌊
m
c

⌋
log(n)).

Corollary 10. If RIE(k) = o(k), then NL 6= P.

Next, we show that if RNL(k) is unbounded, then P does not contain any space

complexity class larger than NL. Since RIE(k) = Θ(RNL(k)), it follows that if

RIE(k) is unbounded, then P does not contain any space complexity class larger

than NL.

For every function f , let NS
f denote the acceptance problem for f(n)-space

bounded non-deterministic Turing machines. NS
f is of particular interest to us if it

is non-deterministically solvable in f(n) space.

Theorem 11. If RNL(k) is unbounded, then NS
f /∈ P for all functions f(n) =

ω(log(n)).

10 Michael Wehar

Proof. We will prove the contrapositive. Suppose that NS
f ∈ P for some func-

tion f(n) = ω(log(n)). By assumption, we may choose c ∈ N and a deterministic

Turing machine T such that T solves NS
f in at most O(nc) time. Let k ∈ N be

given. Choose a non-deterministic Turing machine M that solves NS
k log using at

most O(log(n)) bit cells. We can deterministically solve NS
k log in at most O(nc)

time by feeding T an encoding of M and the input string. Since k is arbitrary,

NS
k log is solvable in O(nc) time for every k. It follows that RNL(k) is bounded.

Corollary 12. If RNL(k) is unbounded, then NSPACE(f(n)) * P for all f(n) =

ω(log(n)) such that f is space-constructible.

Proof. Suppose RNL(k) is unbounded. Let a function f(n) = ω(log(n)) such

that f is space-constructible be given. Apply the preceding theorem to get that

NS
f /∈ P. Since f is space-constructible, one can use the simulation found in any

common proof of the space hierarchy theorem to show that NS
f ∈ NSPACE(f(n)).

Since NS
f /∈ P and NS

f ∈ NSPACE(f(n)), it follows that NSPACE(f(n)) * P.

Corollary 13. If RIE(k) is unbounded, then NSPACE(f(n)) * P for all f(n) =

ω(log(n)) such that f is space-constructible.

6 Conclusion

In Section 4, we showed that SNL(k) = SIE(k) = Θ(k). Therefore, we think of

intersection non-emptiness for DFA’s as characterizing the complexity class NL.

Further, we showed that IED /∈ NSPACE(o(n
log(n) log(log(n))

)). In Section 5, we

showed that if RIE(k) = o(k), then NL 6= P and if RIE(k) is unbounded, then

NSPACE(f(n)) * P for all f(n) = ω(log(n)) such that f is space-constructible.

Therefore, the asymptotic complexity of RIE(k) determines the relationship be-

tween space and time complexity classes.

There are several related problems that appear to be harder than k-IED, but

easier than NS
k log. For example, consider intersection non-emptiness for k NFA’s,

non-emptiness for k-turn 2DFA’s, and intersection non-emptiness for k DFA’s and a

one-counter automaton. We can use SIE(k) = Θ(SNL(k)) and RIE(k) = Θ(RNL(k))

as squeeze theorems to show that all of these problems are of “equivalent” difficulty.

Also, one could define a function that maps the k-IED problems to their actual

circuit complexities. The asymptotic complexity of such a function could determine

the relationship between NL vs NP and P/poly vs space complexity classes [4].

Hardness Results for Intersection Non-Emptiness 11

Several related intersection non-emptiness problems have been studied. There

are two such problems that we would like to mention. In [10], intersection non-

emptiness for acyclic DFA’s, which are DFA’s without directed cycles, was shown

to be NP-complete. We assert that one could modify the construction from the

proof of Theorem 5 to reduce the acceptance problem for n-time and k log(n)-

space bounded non-deterministic Turing machines to intersection non-emptiness

for k acyclic DFA’s. Also, in [11], intersection non-emptiness for tree automata

was shown to be EXPTIME-complete. In an upcoming paper, the author and

Joseph Swernofsky introduce time complexity lower bounds for intersection non-

emptiness for tree automata.

Acknowledgments

I greatly appreciate all of the help and suggestions that I received. In particular, I

would like to thank Christos Kapoutsis for suggestions related to the constructions,

Joseph Swernofsky for proof reading and many discussions, Richard Lipton and

Kenneth Regan for calling attention to my results in an article on their blog [8],

and the many anonymous referees. I would especially like to thank all those at

Carnegie Mellon University who offered their help and support for my honors thesis

on the same topic. In particular, I would like to thank my thesis advisor, Klaus

Sutner, and my thesis committee members, Manuel Blum and Richard Statman.

References

[1] Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of

intersecting finite automata having few final states. Computational Complexity

(CC), 2014 (to appear).

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-

bridge University Press, New York, 2008.

[3] Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems com-

plete for nondeterministic log space. Mathematical Systems Theory 10, 1976.

[4] G. Karakostas, R. J. Lipton, and A. Viglas. On the complexity of intersect-

ing finite state automata and NL versus NP. Theoretical Computer Science,

302:257–274, 2003.

12 Michael Wehar

[5] Dexter Kozen. Lower bounds for natural proof systems. Proc. 18th Symp. on

the Foundations of Computer Science, pages 254–266, 1977.

[6] Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersec-

tions of regular languages. Lecture Notes in Computer Science, 629:346–354,

1992.

[7] R. J. Lipton. On the intersection of finite automata. Gödel’s Lost Letter and

P=NP, August 2009.

[8] R. J. Lipton and K. W. Regan. The power of guessing. Gödel’s Lost Letter

and P=NP, November 2012.

[9] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal, 1959.

[10] Narad Rampersad and Jeffrey Shallit. Detecting patterns in finite regular and

context-free languages. Information Processing Letters, 110, 2010.

[11] Margus Veanes. On computational complexity of basic decision problems of

finite tree automata. UPMAIL Technical Report 133, 1997.

[12] Michael Wehar. Intersection emptiness for finite automata. Honors thesis,

Carnegie Mellon University, 2012.

