Finding the Smallest Turing Machine Using $k \log(n)$ Non-deterministic Guesses

Michael Wehar
University at Buffalo
mwehar@buffalo.edu
May 4, 2014

Consider that we are given a number m and two disjoint finite sets of strings A and R. Does there exist a DFA with at most m states that accepts the strings in A and rejects the string in R? We refer to this problem as the inference problem for DFA’s and denote it by INF$_{DFA}$. It was shown by E. Mark Gold in [4] that INF$_{DFA}$ is NP-hard. To the best of my knowledge, it is not known whether INF$_{DFA}$ remains NP-Hard when restricting A and R such that both sets contain exactly one string. We refer to this problem as separating two words and denote it by S2W$_{DFA}$. Separating two words is related to constructing a minimum DFA that accepts one string and rejects another. From a combinatorial point of view, this problem has been well studied and several upper bounds have been given for the size of a minimum DFA in terms of the length of the string to accept and the string to reject [8]. If the strings have length at most n, it is an open problem to resolve whether a minimum DFA always has $O(\log(n))$ states.

Let’s consider the separating two words problem for computational models with memory. Consider that we are given a number m and two bit strings s_1 and s_2. Does there exist a 2PDA with at most m states that accepts s_1 and rejects s_2? We denote this problem by S2W$_{2PDA}$. It was shown that if s_1 and s_2 have length at most n, then there exists a 2PDA with $O(\log(n))$ states that accepts s_1 and rejects s_2 [3]. Notice that there are at most $2^{O(\log(n) \log \log(n))}$ 2PDA’s with $\log(n)$ states. Therefore, S2W$_{2PDA}$ can be deterministically solved in $2^{O(\log(n) \log \log(n))}$ time by brute force search. One can non-deterministically solve S2W$_{2PDA}$ in $n^{O(1)}$ time using $O(\log(n) \log \log(n))$ non-deterministic guesses. We will improve on this result by showing that there exists a Turing machine with at most $O(\frac{\log(n)}{\log \log(n)})$ states that accepts s_1 and rejects s_2.

1
We will now consider the inference problem for clocked Turing machines introduced by Manuel Blum in [1]. Consider that we are given a number \(m \) and a finite set \(T \) of triples of the form \((s, b, t)\) where \(s \) is a bit string, \(b \) is a single bit, and \(t \) is number represented in unary. A Turing machine \(M \) is said to match a triple \((s, b, t)\) if \(M \) halts on input \(s \) in at most \(t \) steps and \(M \) accepts \(s \) if and only if \(b = 1 \). Does there exist a Turing machine with at most \(m \) states that matches all triples in \(T \)? We denote this problem by \(\text{INF}_{\text{CTM}} \). Without too much effort, one can show \(\text{INF}_{\text{CTM}} \in \text{NP} \). To the best of my knowledge, it is not known if \(\text{INF}_{\text{CTM}} \) is \(\text{NP} \)-Hard. We will show that if there exists a Turing machine that matches all triples in \(T \) and \(T \) has size \(k \), then there is a Turing machine that matches all triples in \(T \) with at most \(k \log(n) \log \log(n) \) states.

Consider the fixed parameter problem where \(T \) contains at most \(k \) triples. We denote this problem by \(k \)-\(\text{INF}_{\text{CTM}} \). It follows that \(k \)-\(\text{INF}_{\text{CTM}} \) can be deterministically solved in \(O(n^k) \) time and \(k \)-\(\text{INF}_{\text{CTM}} \) can be non-deterministically solved in \(n^{O(1)} \) time using \(O(k \log(n)) \) non-deterministic guesses.

If we restrict ourselves to only two triples, we get 2-\(\text{INF}_{\text{CTM}} \) which we will also denote by \(\text{S2W}_{\text{CTM}} \). Notice that \(\text{S2W}_{\text{CTM}} \in \text{P} \), but we don’t know if \(\text{S2W}_{\text{DFA}} \) is solvable in polynomial time. One might think that \(\text{S2W}_{\text{DFA}} \) is easier because DFA’s are computationally much simpler than Turing machines. However, this may not be the case because there always exists a small Turing machine that separates two given strings. Therefore, we need only search through polynomially many Turing machines to find a smallest one that matches both triples.

From a computational complexity point of view, resolving whether the \(k \)-\(\text{INF}_{\text{CTM}} \) problems are deterministically solvable in \(n^{O(1)} \) time could shed light on the relationship between deterministic time and non-deterministic time. Consider the following complexity class for an arbitrary pair of functions \(f(n) \) and \(g(n) \). Let \(\text{NTIGU}(f(n), g(n)) \) denote the set of problems solvable by a non-deterministic Turing machine in at most \(f(n) \) time using at most \(g(n) \) non-deterministic guesses. We show that \(k \)-\(\text{INF}_{\text{CTM}} \) can be deterministically solved in \(O(n^k) \) time and \(k \)-\(\text{INF}_{\text{CTM}} \) can be non-deterministically solved in \(n^{O(1)} \) time using \(O(k \log(n)) \) non-deterministic guesses.

If it happens to be the case that \(k \)-\(\text{INF}_{\text{CTM}} \notin \text{DTIME}(n^{O(1)}) \), then there is an immense gap between \(\text{P} \) and \(\text{NP} \). In particular, for every \(g(n) = \omega(\log(n)) \), \(\text{NTIGU}(\text{poly}(n), g(n)) \notin \text{P} \). However, one might be able to show that \(\text{P} \neq \text{NP} \) implies that such a gap exists.

For an arbitrary function \(g(n) \), what can we say about the relationship between \(\text{NTIGU}(\text{poly}(n), g(n)) \) and \(\text{NTISP}(\text{poly}(n), g(n)) \)? If \(\text{P} = \text{NL} \), then one can space efficiently simulate polynomial time verifiers to get \(\text{NTIGU}(\text{poly}(n), g(n)) \subseteq \text{NTISP}(\text{poly}(n), g(n)) \). Also, it’s worth mentioning that although we do not show that \(k \)-\(\text{INF}_{\text{CTM}} \) is com-
plete for NTIGU(poly(n), O(log(n))), there exist natural problems that are complete for NTISP(poly(n), O(log(n))). In particular, for any fixed k, intersection non-emptiness for k acyclic DFA’s, those without directed cycles, is complete for NTISP(poly(n), O(log(n))).

Acknowledgments

I greatly appreciate the help and suggestions that I received from Joseph Swernofsky. In addition, I would like to thank Manuel Blum for introducing me to inductive inference and for the many discussions that we had on the subject.

References

