
Fixed Parameter Inductive Inference

Michael Wehar

University at Buffalo

mwehar@buffalo.edu

December 28, 2013

Abstract

We investigate a particular inductive inference problem where we are given

as input a finite set of ordered triples of the form (wi, bi, ti) such that wi is a bit

string, bi is a single bit, and ti is a positive integer written in unary. A machine M

is said to match such a triple if M outputs bi on input wi in at most ti steps. We

proceed to investigate the fixed parameter problems where we fix the number of

triples. We show that the problem for k triples is in P. However, no deterministic

machine is known to solve it in less than O(nk) time. These problems are of par-

ticular interest in computational complexity theory because allowing O(log(n))

non-deterministic guesses offers a significant improvement from the best known

deterministic algorithm.

1 Introduction

Definition 1.1. IIP will denote the following problem. Given as input a finite set of

triples as described above and an integer s, does there exist a Turing machine M such

that M matches each triple and M has at most s states.

The problem IIP is a member of a more general class of problems where we are

given as input two disjoint sets of words and a list of auxiliary conditions. The goal is

to find the smallest machine of a particular type that separates the words while meeting

the auxiliary conditions. For IIP, the sets of words are finite sets, the type of machine

* The research work for this paper was done under the direction of Manuel Blum from Carnegie
Mellon University.

1

2 Michael Wehar

is two tape Turing machine with a read only input tape and a read/write work tape,

and the auxiliary conditions consist of runtime bounds for the words from the given two

sets. It’s important to notice that for Turing machines, if the input does not include

auxiliary conditions, then the problem is not solvable. However, for DFA’s and PDA’s,

the problem of separating two disjoint finite sets of words is solvable (without auxiliary

conditions). A few such problems are discussed in [10]. In addition, there are problems

that involve infinite sets of words. For example, finding the smallest DFA that separates

two disjoint regular languages [2].

The problem IIP is clearly in NP. IIP is also believed to be NP-hard [1]. This seems

to be a reasonable hypothesis given that finding the smallest DFA that separates two

finite sets of words is known to be NP-hard [5]. However, after much effort, the author

decided to take the opposite route and try to find methods for solving the problem. In

particular, we present a construction that assigns each finite set of triples a sufficiently

small Turing machine. The number of states in the assigned Turing machine will depend

more so on the number of triples than the length of the wi’s. We are therefore led to

consider the fixed parameter problems where we fix the number of triples. Let k-IIP

denote the set of strings in IIP with at most k triples. First, we give a construction

for matching two triples. Then, we optimize the construction to show that 2-IIP ∈ P.

Finally, we generalize the construction to show that k-IIP ∈ P for all k ∈ N.

2 Basic Construction

Proposition 2.1. 2-IIP ∈ DTIME(poly(n) · 2O(log(n) log log(n))).

Proof. Let an input consisting of (w1, b1, t1), (w2, b2, t2), and s be given. First, if b1

= b2, then there exists a machine with one state that matches both triples i.e. either the

machine that accepts all words or the machine that rejects all words. The remainder

of the proof will be concerned with the case b1 6= b2.

Consider the words w1 and w2. Let i denote the least bit index where w1 and w2

differ. In the event that w1 is a prefix of w2 or w2 is a prefix of w1, i will denote the

length of the shorter word. It is important to note that the Turing machines have blank

symbols after the input word so that it can recognize when the end of the input word

has been reached. Also, consider the runtimes t1 and t2. If t1 or t2 is less than i, then

there does not exist a machine that matches both triples because it takes at least i steps

for the input head to get to a bit where w1 and w2 differ. Therefore, it is appropriate

for us to say that a machine matches both triples with optimal runtime if it halts on

Fixed Parameter Inductive Inference 3

2.a. Three Stages. 2.b. Diagram for printing 1101.

inputs w1 and w2 in exactly i steps. Such a machine will also be said to have optimal

runtime on w1 and w2.

We will construct a machine that matches both triples with optimal runtime and

this machine will have d3 log(i)e+ c states where c is a constant that does not depend

on the triples. Therefore, if s is at least d3 log(i)e + c, then there exists a machine

with at most s states that matches both triples. Otherwise, since for all m ∈ N there

are 2O(m log(m)) machines with m states, we get an upper bound 2O(log(i) log log(i)) for the

number of machines with at most s states. Therefore, we can solve 2-IIP with brute

force enumeration in DTIME(poly(n) · 2O(log(n) log log(n))) steps.

Claim 2.1. There exists a Turing machine with at most d3 log(i)e+c states that matches

both triples and has optimal runtime on w1 and w2.

Proof. We want our machine to move across the input tape to index i where w1

and w2 differ and decide which bit to output based on which bit is stored at index i.

Let’s start with an easier construction for a machine with dlog(i)e+c states that doesn’t

meet the optimal runtime condition. We build a machine that prints the number i in

binary and then decrements the value on the work tape like a counter until it reaches

0. Each time the machine decrements the value on the work tape, the input head shifts

one bit to the right. When the work tape value reaches 0, the input head will be at

index i and the machine will decide which bit to output. The machine can be made

to run in (2i + 1) dlog(i)e. It takes dlog(i)e steps to print i and 2i dlog(i)e steps to

decrement the counter from i to 0.

Now, we will show how to modify the preceding construction to meet the optimal

runtime condition. If i has the form dlog(j)e (2j+1) for some j ∈ N, then we can build a

machine that prints j and then decrements such that at each step the input head moves 1

index to the right. Since this machine runs in i steps, the work tape value will be 0 when

the input head is at index i. The number of states in this machine is dlog(j)e+ c. For

an arbitrary i ∈ N, we can find j ∈ N such that (2j + 1) log(j) ≤ i ≤ (2j + 3) log(j + 1).

4 Michael Wehar

Using calculus, we get (2j + 3) log(j + 1)− (2j + 1) log(j) =
∫ j+1

j
(2 log(x) + 2 + 1

x
) dx

≤ 2 log(j + 1) + 3. Therefore, i is within 2 log(j + 1) + 3 of (2j + 1) log(j). Hence, we

can take the machine for (2j + 1) log(j) with dlog(j)e + c states and add at most an

additional 2 log(j + 1) + 3 states to get a machine for i with at most d3 log(j)e + c ≤
d3 log(i)e+ c states. 2

3 Optimization for Smaller Machine

Theorem 3.1. 2-IIP ∈ P.

Proof. In the previous argument, we constructed a small machine that matches

two triples. Given two triples with input words w1 and w2, the machine moves to the

first bit index i where w1 and w2 differ and outputs based on the bit at this index.

The machine’s computation is split into three stages represented by figure 2.a. The

machine has approximately log(i) states. I claim that there is a smaller machine that

moves to index i and halts. We will construct such a machine with h(i) states such

that 2h(i) log(h(i)) is bounded by a polynomial in i. This will imply that we only need

to enumerate through polynomially many machines to find the smallest machine that

matches two triples. Therefore, 2-IIP ∈ P.

The function h is defined by h(i) = max{ j ∈ N | 2j log(j) ≤ i }. We will introduce

a construction for a machine with O(h(i)) states that moves to index i and then halts.

Similar to before, the machine will print a bit string on the work tape, decrement its

value, and finally move the input head a remaining number of cells to the right.

Let a positive integer m be given. We will give a construction for a machine with

O(h(m)) states that prints m on the work tape in at most p(h(m)) steps for some poly-

nomial p. Let Sj for j from 1 to h(m) denote states. In addition, O(h(m)) auxiliary

states will be used to perform predetermined subroutines. There will be type 1 transi-

tions from Sj to Sj+1 and Sj+1 to Sj for each j. Each state Sj will be the source of one

type 2 transition. There are h(m) choices for each type 2 transition’s target. Therefore,

we can represent each choice by a bit string of length log(h(m)). We can represent a

full list of choices, one per state, by a bit string of length log(m) = h(m) log(h(m)). In

addition, each bit string is associated with such a list of choices. Therefore, there is a

list of choices that is associated with the binary representation of m.

Next, we will describe how the machine prints m. The process consists of h(m)

phases, one for each state. In phase j, the machine will print a bit string of length

Fixed Parameter Inductive Inference 5

3.a. Diagram for printing 10111111.

log(h(m)) that represents which choice Sj made (the target of its type 2 transition)

and then move on to the next phase. In order to do this, the machine will need to

keep count of which phase it is in and the bit strings printed in the previous phases.

The machine will use the count for the current phase to move to the correct state

via type 1 transitions. Then, it will follow a type 2 transition. Finally, it will follow

type 1 transitions all the way back to S1. As it moves back to S1 it will print the bit

string for the associated choice. When it’s finished, it will increment the phase count

by 1. After all phases are complete, the work tape will have printed a bit string of

length log(m) = h(m) log(h(m)). Now, it will decrement it’s value. If at each step

of the computation it moves one index to the right on the input tape, then when the

counter reaches 0, it will be at an index between mh(m) and mh(m)+p(h(m)) for some

polynomial p.

Now, we pick the largest m such that the machine from the above construction

halts on an index less than i. There exists some polynomial q such that m ≤ i ≤
m+ q(h(m)) for all i and m defined in the preceding manner. By the construction from

proposition 2.1, there is a machine that moves the input head i − j indexes with at

most log(q(h(m))) states. If we combine these two machines, then we get a machine

with O(h(i)) states that moves to index i and then halts. 2

4 Generalization for More Triples

Theorem 4.1. k-IIP ∈ P.

Proof. Let k triples be given. Group input words from these triples into sets A and

R such that A contains words to be accepted and R contains words to be rejected. In

the following, we will construct a graph that represents the fewest number of characters

6 Michael Wehar

a Turing machine needs to read to determine whether a word from A∪R is in A or R.

We will construct a directed labeled graph similar to a DFA that will represent which

words are in A and which words are in R. The underlying directed graph structure is

a rooted binary tree directed towards the leaves. The directed edges are labeled with 0

or 1. Vertices are labeled as accept or reject to represent that the directed path from

the root to this vertex is associated with a word in A or R, respectively. This structure

would be a DFA, but it’s incomplete in the sense that some vertices are not labeled

as accept or reject because some words are neither in A nor R. Also, there are some

vertices that do not have an outgoing edge for 0 or 1. However, the structure at least

determines for each word w ∈ A ∪R whether w is in A or R.

Up to this point, there could be several graphs that represent A and R in this

manner. However, we want a particular minimal such graph that reads the fewest

characters needed to determine whether a word is in A or R. The following condition

allows us to achieve this. If a vertex is labeled with accept [reject] and no descendants

are labeled with reject [accept], then the vertex has a loop back to itself and no children.

However, the loop isn’t really used because as soon as we get to a vertex with a loop,

we already know whether to accept or reject the word and don’t need to read any more

characters. I claim that there is a single graph that satisfies the preceding description

with the fewest number of vertices, directed edges, and labels.

Now, we will compress the preceding graph and use the resulting structure to build

a Turing machine that picks out exactly which bits matter in determining whether an

input word is in A or R. We will take the preceding graph, remove branches, and add

labels denoting the size of the removed branch. In particular, each maximal branch that

only contains unlabeled vertices with exactly one child will be removed and the directed

edge leading to this branch will additionally be labeled with the number of the removed

vertices. To avoid confusion, the additional labels will be enclosed by parentheses. The

only exception is when the root has only one child. In this case, we can compress the

maximal branch down to one directed edge.

Let’s try to get an upper bound on the number of vertices in the graph. Since A∪R
contains at most k vertices, at most k vertices are labeled as accept or reject. It follows

that there are at most k vertices with fewer than two children each. One can show by

induction that every binary tree with at most k vertices with fewer than two children

has at most 2k − 1 vertices. In addition, there are at most 2k − 2 edges since each

vertex, besides the root, has an indegree of 1.

The Turing machine will have the structure of the graph that we constructed, but

Fixed Parameter Inductive Inference 7

4.a. Example of graph construction.

with the counter mechanisms described in theorem 3.1 implemented at each edge with

a parentheses label to move the specified number of cells to the right using at most

h(n) states. The machine will have at most (2k − 2)h(n) + 1 states because the graph

has one root and at most 2k − 2 edges for which we need to add at most h(n) states.

In addition, the graph was constructed in such a way that the machine will separate A

and R with optimal runtime. Therefore, k-IIP is solvable in O(poly(n) · 2ckh(n) log(kh(n)))

steps for some constant c. Since k is fixed, k-IIP ∈ P.

We will describe how the Turing machine operates as follows. The machine will take

an input and follow the graph we constructed. We start at the root of the graph. If

we are at a vertex with two children, then we decide which child to move to based on

the current bit on the input tape and move the input head one cell to the right. If the

edge we take also has a parentheses label, then we additionally move the input head the

specified number of cells to the right. If we are at a vertex with only one child, then we

check if we are at the end of the input head. If we are, then we accept or reject based

on the label of the current vertex. Otherwise, we move the input head one cell to the

right or one plus the specified number of cells if the edge has a parentheses label. If we

are at a leaf, then we accept or reject based on the label of the current vertex. 2

5 Conclusion

We investigated an inductive inference problem that if solvable quickly, can be used

to compute the size of the smallest Turing machine that matches a given set of data.

The author has particular interests in two applications:

(1) “Given a large bit string, can we give a short description for the string?”

8 Michael Wehar

(2) “Given a physical device that takes input and produces output, is there a

small Turing machine that models this device?”

Application (1) comes up when compressing data or trying to infer sequences. Ap-

plication (2) comes up when trying to computationally model the outcomes from a

physical experiment [1]. The author is interested in how modeling human experiments

by Turing machines can be useful. Consider a student who is taking a multiple choice

test. Associate with each question a triple of the form (question, response, response

time). Now, construct a Turing machine that matches all such triples that we get from

monitoring the student. It may be difficult to determine how much temporary memory

the student used to answer a particular question. However, it’s easy to compute how

much temporary memory a Turing machine uses on an input.

On the other hand, if IIP is not solvable more quickly, then P 6= NP. If the

k-IIP problems are not solvable more quickly, then we can show that even a small

amount of non-determinism can provide quicker algorithms. In particular, using the

construction from theorem 4.1, we can show ∃c ∈ N ∀k ∈ N, k-IIP can be solved in

O(nc) steps using at most O(log(n)) non-deterministic guesses. However, if @c ∈ N
∀k ∈ N, k-IIP ∈ DTIME(nc), then a small amount of non-determinism provides a

significant improvement for the k-IIP problems. More formally, we would get that for

every non-decreasing function g(n) = ω(log(n)) that can be computed in polynomial

time, there is a problem solvable by a non-deterministic machine in polynomial time

using at most g(n) non-deterministic guesses that is not in P. The reader should notice

that IIP /∈ FPT implies @c ∈ N ∀k ∈ N, k-IIP ∈ DTIME(nc).

It is also important to consider how difficult IIP is in comparison to the DFA

problem. In particular, let D denote the problem for DFA’s where we are given two

disjoint finite sets of words and a number s and want to determine if there exists a DFA

of size at most s that separates the two sets. It was shown in [5] that D is NP-hard.

We were unable to show that IIP is NP-hard. However, we did show that k-IIP ∈
P. Consider k-D where we restrict our attention to inputs where the total number of

words is k. We are led to the question, “Is 2-D in P or NP-hard?” One might expect

that 2-D is in P because 2-IIP is in P and Turing machines are more computationally

powerful than DFA’s. However, the fact that Turing machines are more computationally

powerful than DFA’s should make the problem easier because we may be able to use

their computational power to build smaller machines that separate finite sets. The

question is open and we refer the interested reader to [3] and [10].

Fixed Parameter Inductive Inference 9

As a final remark, we were unable to show that the k-IIP are solvable in less than

linear space. However, we suggest that one may be able to apply results from [7] to

show that k-IIP ∈ DSPACE(n
log(n)

). Since k-IIP ∈ P, either there exist algorithms for

solving k-IIP in less space or P 6= L.

6 Acknowledgments

The author would like to thank Manuel Blum for several meetings and discussions

focused on IIP and other inductive inference problems. In addition, the author would

like to thank Manuel Blum and Joseph Swernofsky for suggestions and corrections

related to the content of the paper.

References

[1] Manuel Blum. Timed Inductive Inference. Unpublished, 2012.

[2] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw

Wang. Learning minimal separating dfas for compositional verification. Lecture

Notes in Computer Science, 5505:31–45, 2009.

[3] James Currie, Holger Petersen, John Michael Robson, and Jeffrey Shallit. Sepa-

rating words with small grammars. J. Automata, Languages, and Combinatorics,

4:101–110, 1999.

[4] Erik D. Demaine, Sarah Eisenstat, Jeffrey Shallit, and David A. Wilson. Remarks

on separating words. CoRR, abs/1103.4513, 2011.

[5] E Mark Gold. Complexity of automaton identification from given data. Informa-

tion and Control, 37(3):302 – 320, 1978.

[6] Gregor Gramlich and Ralf Herrmann. Learning unary automata. Presented at

Descriptional Complexity of Formal Systems, 2005.

[7] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM,

24(2):332–337, April 1977.

[8] Leonard Pitt and Manfred K. Warmuth. The minimum consistent dfa problem

cannot be approximated within any polynomial. J. ACM, 40(1):95–142, January

1993.

10 Michael Wehar

[9] J. M. Robson. Separating words with machines and groups. RAIRO - Theoretical

Informatics and Applications - Informatique Thorique et Applications, 30(1):81–

86, 1996.

[10] Jeffrey Shallit. The separating words problem. Presented at McMaster University

optimization seminar, 2010.

