Creating Patterns with Distance Functions & Voronoi Diagrams

By Jhovani Gallardo Moreno and Michael Wehar

Example of a Voronoi Diagram

Voronoi Diagrams

- Select seed points
- Create regions based on which seed point is closest
- Euclidean distance is commonly used to measure closeness

Question: What if we use a different distance function?

Diagrams Using Novel Distance Functions

Motivations for Non-Classical Diagrams

- Unconventional tilings and artistic designs
- Repeated patterns with cultural analogs (e.g. textile patterns)
- Cell boundaries that emphasize irregular shapes (e.g. curves that resemble fluids)

Our Distance Functions & Results

- We created a drawing algorithm on the AlgoArt Platform for generating Voronoi Diagrams
- Generated over 500+
 Voronoi diagrams using 15
 unique distance functions

* Note that our distance functions don't all follow the typical metric rules

Euclihattan	
$ x_2 - x_1 + y_2 - y_1 + \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}$	$\begin{aligned} \text{MinDiff} \\ min(x_2 - x_1 , y_2 - y_1) \end{aligned}$
PolarEuclidean	AbsDiff
$\sqrt{(cos(x_2) - cos(x_1))^2 + (sin(y_2) - sin(y_1))^2}$	$ x_2 - x_1 - y_2 - y_1 $
PolarManhattan $ cos(x_2) - cos(x_1) + sin(y_2) - sin(y_1) $	DiffProd $ x_2 - x_1 \cdot y_2 - y_1 $
PolarHyperbolic	Chaos
$arcosh\left(1 + 2\frac{\left(\cos(x_{2}) - \cos(x_{1})\right)^{2} + \left(\sin(y_{2}) - \sin(y_{1})\right)^{2}}{(1 - \left(\cos(x_{1})^{2} + \sin(y_{1})^{2}\right))(1 - \left(\cos(x_{1})^{2} + \sin(y_{1})^{2}\right))}\right)$	$\left \sqrt{ x_2 - x_1 } \cdot (x_1 + x_2)/2w - \sqrt{ y_2 - y_1 } \cdot (y_1 + y_2)/2h \right $
	Odd
Wave	$ y_2 - y_1 + 2w/75 * \sqrt{ x_2 - x_1 }$
$\sqrt{ x_2 - x_1 } \cdot \frac{x_1 - x_2}{w/2} - \sqrt{ y_2 - y_1 } \cdot \frac{y_1 - y_2}{\hbar/2}$	Chaos2
PolarWave	$ y_2 - y_1 - 2w/75 * \sqrt{ x_2 - x_1 }$
$\sqrt{ \cos(x_2) - \cos(x_1) } \cdot \frac{\cos(x_1) - \cos(x_2)}{w/2} - \sqrt{ \sin(y_2) - \sin(y_1) } \cdot \frac{\sin(y_1) - \sin(y_2)}{h/2}$	1