Students Teaching Students Computer Art and Graphics

By Michael Wehar

Special thanks to my students and collaborators E. Brickner, X. Dong, J. Gallardo Moreno, O. Khan, X. Li, C. Liu, J. Mancini, M. Newman-Toker, R. Oet, V. Sumano, L. Suresh, P. Tone, and A. Zhang.

Capstone Projects in Computer Graphics

- At my institution, students studying Computer Science are required to complete a capstone project.
- These projects are related to courses or faculty research.
- For the past three years, I have supervised 9 students within 3 cohorts on a research project called AlgoArt (<u>algoart.org</u>).

AlgoArt Platform

- **Goal:** Build bridges between computing and art. Offer a low barrier of entry to create procedurally generated art and graphics.
- Web-based Platform consisting:
 - Open Source Creator Studio (on <u>GitHub</u>)
 - Digital Gallery including user reviews and feedback
- Drawing algorithms are written in JavaScript (JS)
 - Every algorithm follows a framework:
 - Methods for initialize, start, pause, reset, drawOneStep
 - Has a params JS file for customization

Multi-Generational Capstone (MGC)

- Student capstone projects have been continuing to build out the AlgoArt Platform over the past three years.
 - New students pick up where the previous left off
 - Every student has a well-defined subproject
 - Ex. add a new feature, UI redesign, create a drawing algorithm
 - Each student learns from the prior student work and contributes to the future student learning

Another MGC: <u>Map-based Educational Tools for Algorithm Learning (METAL)</u>

What Did Students Learn?

- Benefits for Students
 - Learn basic skills related to computer graphics
 - Fulfill their capstone requirement
 - Build upon the work of those who came before them
- Examples of Computer Graphics Concepts
 - Coordinate Systems
 - Basic Shapes, Polygons, Curves, and Paths
 - Translation, Rotation, and Scaling
 - Color Models, Palettes, Gradients, and Opacity
 - Animation, Collision Detection, and Z-Order

Multiple overlapping (left), discretized classical (right) Developed by L. Suresh

Coordinate Systems (Spirals Algorithm)

- Replicates Archimedean Spiral
- Converts polar coordinates to Cartesian coordinates
- Parameters to adjust the spiral style (e.g. discretized)

Filled circles (left), variety of polygons (right) Developed by A. Zhang

Curves and Paths (Vines Algorithm)

- Visualizes how vines curve and wind around over time
- Implemented several paths: linear, circular, sinusoidal, hybrid
- Parameters to add randomness

Variety of angles (left), horizontal movement (right) Developed by O. Khan

Collision Detection (Collisions Algorithm)

- Simulates balls moving around and colliding in 2D
- Balls can bounce, combine, or break apart based on parameters
- Conservation of momentum

Densely packed (left), sparsely packed (right) Developed by M. Newman-Toker Fractals (Fractals Algorithm)

- Iteratively draws shapes into regions avoiding overlaps
- Leads to drawing smaller shapes into smaller regions
- Inspired by Sierpiński Triangle

Straight line boundaries (left), curved boundaries (right) Developed by J. Gallardo Moreno

Voronoi Diagrams (Voronoi Algorithm)

- Select seed points
- Create regions based on which seed point is closest
- Euclidean distance as well as custom distance functions are used to measure closeness

Creator Studio Demo

- How does it work?
 - Select algorithm
 - Customize parameters
 - Run algorithm
 - Watch image generation
- Real-time animation provides:
 - Visual explanation of how an algorithm works
 - Visual feedback for the student algorithm developer

Future Directions

- Students appear to be learning more with each subsequent cohort.
 - As the platform continues to evolve, will its educational value increase for each future student cohort?
- Generated artworks demonstrate student learning.
 - Could artworks act as visual proof of a student mastering a technical concept?
- Viewing the AlgoArt Platform as an educational tool.
 - Could usage of the platform be beneficial in introduction to programming or computer graphics curriculums?

Thank you!

Visit our GitHub repo

Also, see <u>AlgoArt.org</u> (work in progress!)

We acknowledge support for this work from the Swarthmore College Research and Academic Division Funds.