
On the Complexity of Intersecting Regular,
Context-free, and Tree Languages

Joseph Swernofsky
Independent Researcher

joseph.swernofsky@gmail.com

Michael Wehar
University at Buffalo

mwehar@buffalo.edu

September 3, 2016

Abstract

We apply a construction of Cook (1971) to show that the intersection non-
emptiness problem for one PDA (pushdown automaton) and a finite list of
DFA’s (deterministic finite automata) characterizes the complexity class P.
In particular, we show that there exist constants c1 and c2 such that for every
k, intersection non-emptiness for one PDA and k DFA’s is solvable in O(nc1k)
time, but is not solvable in O(nc2k) time. Then, for every k, we reduce
intersection non-emptiness for one PDA and 2k DFA’s to non-emptiness for
multi-stack pushdown automata with k-phase switches to obtain a tight time
complexity lower bound. Further, we revisit a construction of Veanes (1997)
to show that the intersection non-emptiness problem for tree automata also
characterizes the complexity class P. We show that there exist constants c1
and c2 such that for every k, intersection non-emptiness for k tree automata
is solvable in O(nc1k) time, but is not solvable in O(nc2k) time.

1 Introduction

To determine whether a mathematical object exists one could start by listing con-
straints for the proposed object to satisfy. Then, for each constraint one could
build a verifier to computationally determine whether an input satisfies the con-
straint. If each constraint can be verified by an automaton, does that mean one
could efficiently determine whether there exists an object that satisfies all of the
constraints?

We will investigate problems where we are given an encoding of a finite list of
automata and want to determine whether there exists a string that satisfies each
automaton in the list. A problem of this form is referred to as an intersection non-
emptiness problem because it is equivalent to determining whether the languages
associated with the automata have a non-empty intersection.

1

2 Joseph Swernofsky and Michael Wehar

Each of the intersection non-emptiness problems that we investigate will be
viewed as an infinite family of problems indexed on the natural numbers by the
number of machines k. For each problem in such a family, we will prove a time
complexity lower bound. One may be tempted to view each family of problems
as a single parameterized problem. Such an interpretation is fine as long as one
realizes that we aren’t simply proving a single parameterized complexity lower
bound. Rather, we are proving a lower bound for each of the infinitely many fixed
levels of the parameterized problem.

In Section 2, we introduce some basic results that allow us to compare infinite
families of problems. These results will be used to put all of our findings into a
general framework to efficiently present our complexity lower bounds and shed light
on the relationship between types of automata and complexity classes.

The intersection non-emptiness problem for DFA’s, which we denote by IED,
is a well known PSPACE-complete problem [7]. Consider fixing the number
of machines in the input. Let k-IED denote the restricted version of IED such
that only inputs with at most k machines are accepted. In [18], the second au-
thor proved a tight non-deterministic space complexity lower bound for the k-IED
problems. He showed that there exist c1 and c2 such that for every k, k-IED ∈
NSPACE(c1k log(n)) and k-IED /∈ NSPACE(c2k log(n)) where space is measured
relative to a fixed work tape alphabet. Therefore, we say that intersection non-
emptiness for DFA’s characterizes the complexity class NL.

First, we will investigate intersection non-emptiness for one PDA and a finite
list of DFA’s which we denote by IE1P+D. We will show that there exist con-
stants c1 and c2 such that for every k, k-IE1P+D ∈ DTIME(nc1k) and k-IE1P+D /∈
DTIME(nc2k). In order to show the lower bound, we will reduce the acceptance
problem for k log(n)-space bounded auxiliary pushdown automata to k-IE1P+D.
Then, we will apply results from [4] to get that k log(n)-space bounded auxiliary
pushdown automata can be used to simulate k log(n)-space bounded alternating
Turing machines. Finally, we will apply results from [2] to get that k log(n)-space
bounded alternating Turing machines can be used to simulate nk-time bounded
deterministic Turing machines.

Next, we will investigate non-emptiness for multi-stack pushdown automata
with k-phase switches which we denote by k-MPDA. From [12], we know that
k-MPDA ∈ DTIME(nO(2k)). This result was shown by reducing k-MPDA to non-
emptiness for graph automata with bounded tree width and then further reducing
to non-emptiness for tree automata. We will show that this upper bound is tight.
In particular, we will show that there exist constants c1 and c2 such that for every
k, k-MPDA ∈ DTIME(nc12k) and k-MPDA /∈ DTIME(nc22k). In order to show
the lower bound, we will reduce 2k-IE1P+D to k-MPDA and then apply the lower
bound for 2k-IE1P+D from the preceding section. In addition, we will present a
lower bound for the dual of the k-MPDA problem.

Finally, we will investigate intersection non-emptiness for tree automata which
we denote by IET . In [16], it was shown that IET is EXPTIME-complete. We
will show that there exist constants c1 and c2 such that for every k, k-IET ∈

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 3

DTIME(nc1k) and k-IET /∈ DTIME(nc2k). In order to show the lower bound, we
will reduce the acceptance problem for k log(n)-space bounded alternating Tur-
ing machines to k-IET . Then, we will again apply results from [2] to get that
k log(n)-space bounded alternating Turing machines can be used to simulate nk-
time bounded deterministic Turing machines.

2 Preliminaries

2.1 Complexity Classes

Each of the following complexity classes is associated with a machine class. In
particular, a language X is in the complexity class if and only if there exists a
machine M in the associated machine class such that M accepts X.

NL : Logarithmic space bounded non-deterministic Turing machines

AL : Logarithmic space bounded alternating Turing machines

AuxL : Logarithmic space bounded auxiliary pushdown automata

P : Polynomial time bounded deterministic Turing machines

Although NL ⊆ P, it is not known if P = NL. However, using machine
simulations, it was proven that P = AL in [2] and P = AuxL in [4].

If one carefully looks at the simulations from [2], one will notice that there are
universal constants c1 and c2 such that for every k, each nk-time bounded determin-
istic Turing machine can be simulated by a c1k log(n)-space bounded alternating
Turing machine and each k log(n)-space bounded alternating Turing machine can
be simulated by a nc2k-time bounded deterministic Turing machine. Hence, not
only are P and AL equivalent, but the DTIME(nk) classes that make up P and
the ASPACE(k log(n)) classes that make up AL are in some sense level-by-level
equivalent to each other. This example should motivate the notion of level-by-level
equivalence that we introduce in Section 2.3.

2.2 Acceptance Problems

We will specify a Turing machine model and introduce acceptance problems for the
machine classes associated with NL, AL, AuxL, and P.

By a Turing machine, we are referring to a machine with a single two-way read-
only input tape and a single two-way read/write binary work tape. The condition
on the work tape being binary is significant. In particular, for space complexity,
constants matter when the alphabet is fixed. By an f(n)-time bounded Turing
machine, we mean a Turing machine that runs for at most f(n) steps on all inputs
of length n. By an f(n)-space bounded Turing machine, we mean a Turing machine
that uses at most f(n) cells on the binary work tape for all inputs of length n. By
uses at most f(n) cells, we mean that the tape head never moves to the right of

4 Joseph Swernofsky and Michael Wehar

the f(n)th cell. Time and space bounded auxiliary pushdown automata can be
defined similarly where the space bounds only apply to the auxiliary work tape.
The space bounds do not apply to the stack.

The general form of an acceptance problem is as follows. Given an encoding of
a machine M and an input x, does M accept x? For each k and each machine class
that we discussed in Section 2.1, we can define an acceptance problem. Consider
the following acceptance problems and their associated machine classes.

NS
k log : k log(n)-space bounded non-deterministic Turing machines

AS
k log : k log(n)-space bounded alternating Turing machines

AuxS
k log : k log(n)-space bounded auxiliary pushdown automata

DT
nk : nk-time bounded deterministic Turing machines

2.3 Level-By-Level Equivalence

For each k and each machine class from Section 2.1, we defined an acceptance
problem. In other words, for each machine class, we defined an infinite family of
acceptance problems. These infinite families of problems characterize their associ-
ated machine classes and their associated complexity classes.

Let’s look at an example. Consider the family {DT
nk}k∈N. The proof of the time

hierarchy theorem has two parts: universal simulation and diagonalization. From
universal simulation of deterministic Turing machines, we get a constant c1 such
that for every k, DT

nk ∈ DTIME(nc1k). From diagonalization, we get a smaller
constant c2 such that for every k, DT

nk /∈ DTIME(nc2k). Therefore, we say that this
family characterizes the complexity class P.

The notion of an infinite family characterizing a complexity class leads us to the
concept of LBL (level-by-level) reducibility. This concept will allow us to compare
the complexity of infinite families of problems.1

Given two infinite families of problems X := {Xk}k∈N and Y := {Yk}k∈N, we
say that X is (polynomial time) LBL-reducible to Y if there exists a constant c
such that for every k, there exists an O(nc)-time bounded reduction from Xk to
Yk where k is treated as a constant. If X is LBL-reducible to Y , then we write
X ≤L Y . If X is LBL-reducible to Y and Y is LBL-reducible to X, then we say
that X and Y are LBL-equivalent and write X ≡L Y . Notice that ≤L is transitive
and ≡L is an equivalence relation.

To simplify how one shows that an infinite family X is LBL-reducible to {DT
nk}k∈N,

we have the following proposition.

Proposition 1. Let an infinite family X be given. If there exists c such that for
every k, Xk ∈ DTIME(nck), then X is LBL-reducible to {DT

nk}k∈N.

1An LBL-reduction is an infinite family of reductions. Such a family of reductions can be
viewed as the non-uniform analogue of an fpt-reduction [5]. We introduce the distinct notion of
an LBL-reduction to emphasize that our lower bounds will apply to each problem in the respective
family of problems.

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 5

To simplify how one shows a (near) tight time complexity lower bound for an
infinite family X, we have the following proposition.

Proposition 2. If an infinite family X is LBL-equivalent to {DT
nk}k∈N, then there

exist c1 and c2 such that for every k, Xk ∈ DTIME(nc1k) and Xk /∈ DTIME(nc2k).

The simulations that we mentioned in Section 2.1 lead to two significant ex-
amples of LBL equivalence. In particular, from the simulations in [2], we have
that {DT

nk}k∈N is LBL-equivalent to {AS
k log}k∈N. Also, from the simulations in [4],

we have that {DT
nk}k∈N is LBL-equivalent to {AuxS

k log}k∈N. Now, we can apply
Proposition 2 and the LBL equivalences to obtain (near) tight time complexity
lower bounds. For example, consider the LBL equivalence between {DT

nk}k∈N and
{AS

k log}k∈N. By applying Proposition 2, we get that there exist c1 and c2 such that

for every k, AS
k log ∈ DTIME(nc1k) and AS

k log /∈ DTIME(nc2k).
We will further use the equivalences for deterministic time, alternating space,

and auxiliary space to prove equivalences for intersection non-emptiness problems.
Then, we will apply Proposition 2 to obtain (near) tight time complexity lower
bounds for these problems.

3 One PDA and k DFA’s

It is well known that the general intersection non-emptiness problem for DFA’s is
PSPACE-complete [7]. Further work has shown that variations of this problem
are hard as well [9]. We consider the problem where in addition to a finite list
of DFA’s, we are also given a single pushdown automaton. Notice that it doesn’t
make sense to consider more than one PDA because the intersection non-emptiness
problem for two pushdown automata is undecidable.

We will show that intersection non-emptiness for one PDA and k DFA’s is
equivalent to acceptance for nk-time bounded deterministic Turing machines. In
particular, we will show that {k-IE1P+D}k∈N is LBL-equivalent to {DT

nk}k∈N.
Using the product construction, one can solve each k-IE1P+D problem in O(nck)

time for some constant c. Further, one can apply Proposition 1 to get the following
result.

Proposition 3. {k-IE1P+D}k∈N is LBL-reducible to {DT
nk}k∈N.

In the following theorem, we reduce acceptance for space bounded auxiliary
pushdown automata to intersection non-emptiness for one PDA and a finite list of
DFA’s. The reduction that we present is based on reductions from [6] and [7]. Our
presentation is in the same format as that from the second author’s previous work
where he reduces acceptance for non-deterministic space bounded Turing machines
to intersection non-emptiness for a finite list of DFA’s [18].

Theorem 4. {AuxS
k log}k∈N is LBL-reducible to {k-IE1P+D}k∈N.

6 Joseph Swernofsky and Michael Wehar

Proof. An auxiliary pushdown automaton has a stack, a two-way read-only
input tape, and a single read/write work tape. We will restrict the read/write
work tape to be binary and bound the amount of cells that the automaton can use
in terms of the input length. In addition, we will only consider auxiliary pushdown
automata where the stack alphabet is binary. Such restricted auxiliary PDA’s are
sufficient for carrying out the simulation in [4].

Let k be given. We will describe a reduction from AuxS
k log to k-IE1P+D. Let a

k log(n)-space bounded auxiliary pushdown automaton M of size nM and an input
string x of length nx be given. Together, an encoding of M and x represent an
arbitrary input for AuxS

k log. Let n denote the total size of M and x combined i.e.
n := nM + nx.

Our task is to construct one PDA and k DFA’s, denoted by PD and {Di}i∈[k],
each of size at most O(nc) for some fixed constant c such that M accepts x if and
only if L(PD) ∩

⋂
i∈[k] L(Di) is non-empty.

The automata will read in a string that represents a computation of M on x
and verify that the computation is valid and accepting. The PDA PD will verify
that the stack is managed correctly while the DFA’s will verify that the work tape
is managed correctly. In particular, the work tape of M will be split into k sections
each consisting of log(nx) sequential bits of memory. The ith DFA, Di, will keep
track of the ith section and verify that it is managed correctly. In addition, all of
the DFA’s will keep track of the tape head positions.

The following two concepts are essential to our construction.
A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit, stack action, top bit).

The alphabet symbols are identified with forgetful configurations. The PDA
PD only has two states. When it reads a forgetful configuration a, if a represents
the top of the stack correctly, then PD loops in the initial/accepting state and
pushes or pops based on the stack instruction that a represents. Otherwise, PD
goes to the dead/rejecting state.

The states for the Di’s are identified with section i configurations. Each Di has
a single initial state. We identify this initial state with the section i configuration
of M that represents the initial input and work positions, a blank ith section of the
work tape, and the initial state of M. The final states of Di represent accepting
configurations of M.

Informally, the transitions are defined as follows. For each Di, there is a transi-
tion from state r1 to state r2 with symbol a if a validly represents how the state and
partial tapes for r1 and r2 could be manipulated in one step for the computation
of M on input x. It’s important to notice that in order to determine if there is a
transition, the stack action and top bit of the stack must be taken into account.

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 7

We assert without proof that for every string y, y represents a valid accepting
computation of M on x if and only if y ∈ L(PD) ∩

⋂
i∈[k] L(Di). Therefore, M

accepts x if and only if L(PD) ∩
⋂

i∈[k] L(Di) is non-empty. By bounding the total
number of section i configurations, one can show there exists a fixed two variable
polynomial q such that each Di has at most q(n, k) states. Therefore, there is a
constant d that does not depend on k such that each Di has size at most O(nd)
where k is treated as a constant. Further, we can compute each Di’s transition
table by looping through every combination of a pair of states and an alphabet
symbol, and marking the valid combinations. The number of possible combinations
is a fixed polynomial blow-up from nd. Therefore, we can compute the transition
tables in O(nc) time for some slightly larger constant c that does not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduction
from AuxS

k log to k-IE1P+D.
In the preceding reduction, it was surprising that the PDA had a fixed number

of states. Even more surprisingly, one could convert the automata constructed in
the reduction to automata with a binary input alphabet. In doing so, the PDA can
be made fixed. In other words, there is a fixed deterministic pushdown automaton
for which the intersection non-emptiness problem is hard.

Corollary 5. {k-IE1P+D}k∈N and {DT
nk}k∈N are LBL-equivalent.

Proof. From Section 2, we know that {AuxS
k log}k∈N ≡L {DT

nk}k∈N. Further,
we have {AuxS

k log}k∈N ≤L {k-IE1P+D}k∈N ≤L {DT
nk}k∈N from Proposition 3 and

Theorem 4. Combine to obtain the desired result.

Corollary 6. ∃c1 ∃c2 ∀k k-IE1P+D ∈ DTIME(nc1k) and k-IE1P+D /∈ DTIME(nc2k).

Proof. Combine Corollary 5 with Proposition 2.

4 MPDA’s with k-Phase Switches

A two-stack pushdown automaton can simulate a Turing machine. Therefore, the
non-emptiness problem for such machines is undecidable. However, we can restrict
how and when the machines can access their stacks to obtain classes of machines
whose non-emptiness problems are decidable [12]. In particular, we will discuss the
k-phase switches restriction. This restriction forces a machine to designate a stack
for popping. In other words, a restricted machine can push to any stack, but only
pop from the designated stack. The k refers to how many times the machine can
switch which stack is designated. We refer to a machine with such a restriction
as a multi-stack pushdown automaton with k-phase switches. For background on
such machines, we refer the reader to [14]. We also investigate what we refer to as
the dual machines. These machines can pop from any stack, but can only push to
the designated stack.

We will denote the non-emptiness problem for multi-stack pushdown automata
with k-phase switches by k-MPDA. Similarly, we will denote the non-emptiness

8 Joseph Swernofsky and Michael Wehar

problem for the dual machines by k-co-MPDA. We will show that {k-MPDA}k∈N,
{k-co-MPDA}k∈N, and {DT

n2k
}k∈N are LBL-equivalent. As a result, we will obtain

tight lower bounds for these non-emptiness problems.
Recently, the non-emptiness problem for a related class of infinite automata was

shown to have a double exponential time lower bound [8]. In addition, the non-
emptiness problem for ordered multi-stack pushdown automata was shown to have
a double exponential time lower bound [1]. Our lower bound may be suggested by
such sources, but we elegantly prove it using a novel reduction found in the proof
of Theorem 8.

Proposition 7. {k-MPDA}k∈N and {k-co-MPDA}k∈N are LBL-reducible to {DT

n2k
}k∈N.

Sketch of proof. In [12], it was shown that k-MPDA and k-co-MPDA ∈
DTIME(nO(2k)) by a reduction to non-emptiness for graph automata with bounded
tree width and further to non-emptiness for tree automata. Then, one can apply a
variation of Proposition 1 to get the desired result.

In the following theorem, we reduce intersection non-emptiness for one PDA
and 2k DFA’s to non-emptiness for multi-stack pushdown automata with k-phase
switches.

Theorem 8. {2k-IE1P+D}k∈N is LBL-reducible to {k-MPDA}k∈N.

Sketch of proof. Let an input for 2k-IE1P+D consisting of a PDA and 2k DFA’s
be given. We will describe how to construct a multi-stack pushdown automaton
M with k-phase switches whose language is non-empty if and only if the PDA and
DFA’s languages have a non-empty intersection.

The machine M will have k stacks. It will read its input and copy it onto all
of the stacks besides the first stack. While it is reading the input, the first stack
will be used to simulate the PDA on the input. Then, it will repeat the following
procedure until each of the stacks have been designated once.

The procedure consists of popping from the designated stack and pushing what
is being popped onto all of the other stacks. While it is popping, it is also simulating
one DFA per copy of the input string or simulating one DFA in reverse per copy
of the reversal of the input string. This will eventually create exponentially many
copies of the input string followed by the reversal of the input string and lead to
simulating each DFA or reversal on one of the copies.

If the PDA and all of the DFA’s accept, then M will accept. Otherwise, M
will reject. In total, we are able to simulate one PDA and O(2k) DFA’s using only
k-phase switches. Also, the size of M will be approximately the sum of the sizes of
the PDA and DFA’s.

A related reduction can be given for the dual machines. The proof of Theorem
9 can be found in Appendix D.

Theorem 9. {2k-IE1P+D}k∈N is LBL-reducible to {k-co-MPDA}k∈N.

Corollary 10. {k-MPDA}k∈N, {k-co-MPDA}k∈N, and {DT

n2k
}k∈N are LBL-equivalent.

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 9

Sketch of proof. From Corollary 5, we have {2k-IE1P+D}k∈N ≡L {DT

n2k
}k∈N.

Further, we have {2k-IE1P+D}k∈N ≤L {k-MPDA}k∈N ≤L {DT

n2k
}k∈N from Propo-

sition 7 and Theorem 8. Similarly, we have reductions for the dual machines.
Combine to obtain the desired result.

Corollary 11. There exist c1 and c2 such that for every k:

i) k-MPDA and k-co-MPDA ∈ DTIME(nc12k)

ii) k-MPDA and k-co-MPDA /∈ DTIME(nc22k).

Sketch of proof. Combine Corollary 10 and a variation of Proposition 2.

5 k Tree Automata

It is known that the general intersection non-emptiness problem for deterministic
top-down tree automata is EXPTIME-complete [3]. We will show that intersec-
tion non-emptiness for k deterministic top-down tree automata is equivalent to
acceptance for nk-time bounded deterministic Turing machines. In particular, we
will show that {k-IET }k∈N is LBL-equivalent to {DT

nk}k∈N. For background on
decision problems for tree automata, we refer the reader to [3] and [13].

Using the product construction, one can solve each k-IET problem in O(nck)
time for some constant c. Further, one can apply Proposition 1 to get the following
result.

Proposition 12. {k-IET }k∈N is LBL-reducible to {DT
nk}k∈N.

In the following theorem, we reduce acceptance for alternating Turing machines
to intersection non-emptiness for tree automata. The reduction that we present is
similar to that found in [16] and briefly described in [3]. Our presentation is in the
same format as Theorem 4.

Theorem 13. {AS
k log}k∈N is LBL-reducible to {k-IET }k∈N.

Proof. An alternating Turing machine has existential states and universal
states. Therefore, there are existential configurations and universal configurations.
An existential configuration c leads to an accepting configuration if and only if
there exists a valid transition out of c that leads to an accepting configuration. A
universal configuration c leads to an accepting configuration if and only if every
valid transition out of c leads to an accepting configuration. We will only consider
alternating machines such that no universal configuration can have more than two
valid outgoing transitions. We assert without proof that any alternating machine
can be unraveled with intermediate universal states to satisfy this property in such
a way that there is no more than a polynomial blow-up in the number of states.

Let k be given. We will describe a reduction from AS
k log to k-IET . Let a

k log(n)-space bounded alternating Turing machine M of size nM and an input

10 Joseph Swernofsky and Michael Wehar

string x of length nx be given. Together, an encoding of M and x represent an
arbitrary input for AS

k log. Let n denote the total size of M and x combined i.e.
n := nM + nx.

Our task is to construct k top-down deterministic tree automata, denoted by
{Ti}i∈[k], each of size at most O(nc) for some fixed constant c such that M accepts
x if and only if

⋂
i∈[k] L(Ti) is non-empty.

The tree automata will read in a labeled tree that represents a computation of
M on x and verify that the computation is valid and accepting. The work tape of
M will be split into k sections each consisting of log(nx) sequential bits of memory.
The ith tree automaton, Ti, will keep track of the ith section and verify that it is
managed correctly. In addition, all of the tree automata will keep track of the tape
head positions.

The following two concepts are essential to our construction.
A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit).

The alphabet consists of symbols of arity 0, 1, and 2 such that each arity 0 sym-
bol represents an accepting forgetful configuration, each arity 1 symbol represents
an arbitrary forgetful configuration, and each arity 2 symbol represents a pair of
forgetful configurations. We won’t need any symbols of arity larger than 2 because
each universal configuration has at most two outgoing transitions.

The states of Ti are identified with section i configurations. Each Ti has a single
initial state. We identify this initial state with the section i configuration of M
that represents the initial input and work positions, a blank ith section of the work
tape, and the initial state of M.

We say that a section i configuration r extends a forgetful configuration a if r
agrees with a on state, input position, and work position.

We say that a section i configuration r1 transitions to a section i configuration
r2 on input x if either (a) the work position for r1 is in the ith section and r2
correctly represents how the tape positions and the ith section could change in one
step of the computation on x, or (b) r1 is not in the ith section and r1 and r2 agree
on the ith section of the work tape.

For each Ti, we have the following transitions. Each arity 0 symbol a accepts
on a state r if and only if r extends a and a represents an accepting state of M.
Each arity 1 symbol a transitions from a state r1 to a state r2 if and only if (i)
r1 transitions to r2 on input x (consistently with a’s write bit), (ii) r2 extends a,
and (iii) if r1 is a universal configuration and the work position of r1 is in the
ith section, then r1 can only transition to r2 on input x. Each arity 2 symbol
(a1, a2) transitions from a state r to a pair of distinct states (r1, r2) if and only if

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 11

r transitions to r1 on input x, r transitions to r2 on input x, r1 extends a1, and r2
extends a2.

We assert without proof that for every labeled tree y, y represents a valid
accepting computation of M on x if and only if y ∈

⋂
i∈[k] L(Ti). Therefore, M

accepts x if and only if
⋂

i∈[k] L(Ti) is non-empty. By bounding the total number of
section i configurations, one can show there exists a fixed two variable polynomial
q such that each Ti has at most q(n, k) states. Therefore, there is a constant d that
does not depend on k such that each Ti has size at most O(nd) where k is treated as
a constant. Further, we can compute each Ti’s transition table by looping through
every combination of a pair of states and an alphabet symbol, and marking the
valid combinations. The number of possible combinations is a fixed polynomial
blow-up from nd. Therefore, we can compute the transition tables in O(nc) time
for some slightly larger constant c that does not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduction
from AS

k log to k-IET .

Corollary 14. {k-IET }k∈N and {DT
nk}k∈N are LBL-equivalent.

Proof. From Section 2, we know that {AS
k log}k∈N ≡L {DT

nk}k∈N. Further, we
have {AS

k log}k∈N ≤L {k-IET }k∈N ≤L {DT
nk}k∈N from Proposition 12 and Theorem

13. Combine to obtain the desired result.

Corollary 15. ∃c1 ∃c2 ∀k k-IET ∈ DTIME(nc1k) and k-IET /∈ DTIME(nc2k).

Proof. Combine Corollary 14 with Proposition 2.

6 Conclusion

We introduced the notions of LBL reducibility and LBL equivalence for infinite
families of problems.2 We then used existing simulations to show that {DT

nk}k∈N,
{AS

k log}k∈N, {AuxS
k log}k∈N, {k-IE1P+D}k∈N, and {k-IET }k∈N are all polynomial time

LBL-equivalent. Further, we applied that {DT
nk}k∈N and {k-IE1P+D}k∈N are LBL-

equivalent to show that {DT

n2k
}k∈N, {2k-IE1P+D}k∈N, {k-MPDA}k∈N, and {k-co-

MPDA}k∈N are all polynomial time LBL-equivalent. By combining these equiva-
lences with Proposition 2, we get (near) tight time complexity lower bounds for all
of these problems.

We claim that all of the polynomial time LBL-reductions that we presented can
be carefully optimized to become log-space LBL-reductions. Formally, we say that
a family X if log-space LBL-reducible to a family Y if there exists a constant c and
a function f such that for every k, there exists a (c + o(1)) log(n)-space reduction
from Xk to Yk where k is treated as a constant.

2These concepts serve as the non-uniform analogues of fpt reducibility and fpt equivalence
from the subject of parameterized complexity theory [5].

12 Joseph Swernofsky and Michael Wehar

The notion of log-space LBL equivalence can be used to express the P vs NL
problem from structural complexity theory. Consider the machine classes con-
sisting of polynomial time bounded deterministic Turing machines and log-space
bounded non-deterministic Turing machines. These machine classes have associ-
ated acceptance problems {DT

nk}k∈N and {NS
k log}k∈N, respectively. One can show

that P = NL if and only if {DT
nk}k∈N and {NS

k log}k∈N are log-space LBL-equivalent.
Now, one might ask, “What’s the relationship between P vs NL and intersection

non-emptiness problems?” We know that {DT
nk}k∈N and {k-IE1P+D}k∈N are log-

space LBL-equivalent. In addition, from the second author’s previous work [18],
it can be shown that {NS

k log}k∈N and {k-IED}k∈N are log-space LBL-equivalent.
Therefore, we get that P = NL if and only if {k-IE1P+D}k∈N and {k-IED}k∈N
are log-space LBL-equivalent. In other words, P = NL if and only if adding a
PDA does not increase the difficulty of the intersection non-emptiness problem for
DFA’s.

We showed that intersection non-emptiness problems for DFA’s, PDA’s, and
tree automata characterize complexity classes. There are many more types of
automata and we suggest that one may be able to prove more characterizations
using the notion of LBL reducibility. From this perspective, we intend to investigate
decision problems for tree automata with auxiliary memory.

Acknowledgments.

We greatly appreciate all of the help and suggestions that we received. We would
especially like to thank Richard Lipton, Kenneth Regan, Atri Rudra, and all those
from Carnegie Mellon University who were supportive of our research work while
we were undergraduates.

References

[1] M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown au-
tomata is 2ETIME-Complete. Developments in Language Theory, 2008.

[2] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
J. ACM, 28(1):114–133, January 1981.

[3] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications, Oc-
tober 2007.

[4] Stephen A. Cook. Characterizations of pushdown machines in terms of time-
bounded computers. J. ACM, 18(1):4–18, January 1971.

[5] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 13

[6] G. Karakostas, R. J. Lipton, and A. Viglas. On the complexity of intersecting
finite state automata and NL versus NP. TCS, 302:257–274, 2003.

[7] Dexter Kozen. Lower bounds for natural proof systems. Proc. 18th Symp. on
the Foundations of Computer Science, pages 254–266, 1977.

[8] S. L. Torre, P. Madhusudan, and G. Parlato. An infinite automaton charac-
terization of double exponential time. CSL 2008, pages 33–48, 2008.

[9] Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersec-
tions of regular languages. Lecture Notes in Computer Science, 629:346–354,
1992.

[10] N. Limaye and M. Mahajan. Membership testing: Removing extra stacks from
multi-stack pushdown automata. LATA 2009, pages 493–504, 2009.

[11] R. J. Lipton. On the intersection of finite automata. Gödel’s Lost Letter and
P=NP, August 2009.

[12] P. Madhusudan and Gennaro Parlato. The tree width of automata with aux-
iliary storage. POPL 2011, 2011.

[13] W. Martens and S. Vansummeren. Automata and logic on trees: Algorithms.
ESSLLI 2007, 2007.

[14] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. LICS 2007, pages 161–170, 2007.

[15] Leslie G. Valiant. Decision Procedures for Families of Deterministic Pushdown
Automata. PhD thesis, University of Warwick, August 1973.

[16] Margus Veanes. On computational complexity of basic decision problems of
finite tree automata. UPMAIL Technical Report 133, 1997.

[17] Michael Wehar. Intersection emptiness for finite automata. Honors thesis,
Carnegie Mellon University, 2012.

[18] Michael Wehar. Hardness results for intersection non-emptiness. ICALP 2014
(Part II), pages 354–362, 2014.

A Appendix: Proof of Proposition 1

Let an infinite family X be given. Suppose that there exists c such that for every
k, Xk ∈ DTIME(nck).

Let k be given. We will describe how to reduce Xk to DT
nk . Choose a deter-

ministic Turing machine M that solves Xk in nck time. Therefore, M is nck-time
bounded. We can modify M to get a machine M′ that is nk-time bounded where

14 Joseph Swernofsky and Michael Wehar

M′ accepts a string x if and only if x can be split into a mc length padding and a
length m string that is accepted by M for some natural number m.

Now, let a string y of length m be given. The reduction takes y and maps to an
encoded pair consisting of M ′ and y padded with a string of length mc. We have
that y ∈ Xk if and only if the encoded pair is in DT

nk . Since M′ is fixed, this is a
O(nc)-time bounded reduction where c does not depend on k.

B Appendix: Proof of Proposition 2

Let an infinite family X be given. Suppose that X is LBL-equivalent to {DT
nk}k∈N

with reduction constants c1 and c2.
Let k be given. Consider the O(nc1)-time bounded reduction from Xk to DT

nk .
By universal simulation, there is a deterministic Turing machine M that solves
DT

nk in nd1k time for a constant d1 that does not depend on k. If we combine the
reduction with the machine M, we get a machine that solves Xk in O(nc1d1k) time.
Therefore, Xk ∈ DTIME(nc1d1k).

Consider the O(nc2)-time bounded reduction from DT
nk to Xk. By diagonaliza-

tion, we get a constant d2 that does not depend on k such that DT
nk /∈ DTIME(nd2k).

Hence, we can’t solve Xk in O(n
d2k
c2) time or else we would be able to combine such

a solver with the reduction to show that DT
nk ∈ DTIME(nd2k) which can’t happen.

Therefore, Xk /∈ DTIME(n
d2k
c2).

C Appendix: Proof of Proposition 3

Non-emptiness for a single PDA is known to be solvable in polynomial time. Hence,
we may choose c such that non-emptiness for PDA’s is in DTIME(nc).

Let k be given. Let an input consisting of one PDA and k DFA’s be given.
Let m denote the number of states from the largest automaton. Let n denote the
total length of the input’s string encoding. The product of the PDA and k DFA’s
is a PDA with at most mk+1 states and the product can be encoded by a string
of length at most nk+1. Now, we use the algorithm that decides non-emptiness for
PDA’s to solve non-emptiness for the product automaton in O(nc(k+1)) time.

Since k is arbitrary, we have for all k, k-IE1P+D ∈ DTIME(nc(k+1)). We can
choose a larger constant c′ so that for all k, k-IE1P+D ∈ DTIME(nc′k). Now, we can
apply Proposition 1 to get that {k-IE1P+D}k∈N is LBL-reducible to {DT

nk}k∈N.

D Appendix: Proof of Theorem 9

Let an input for 2k-IE1P+D consisting of a PDA and 2k DFA’s be given. We will de-
scribe how to construct a dual machine with k-co-phase switches that accepts some
input if and only if the PDA and DFA’s languages have a non-empty intersection.

On the Complexity of Intersecting Regular, Context-free, and Tree Languages 15

The MPDA will have k stacks. It will read an input consisting of 2k separated
strings and repeat the following procedure. As it is reading the input, it will copy
the strings onto the designated stack. In addition, while reading, it will trade-off
between simulating one DFA per string and simulating one DFA in reverse per
string. Eventually, the MPDA will non-deterministically guess that it reached the
midpoint i.e. the point when the designated stack’s height is equal to the length of
what still needs to be read on the input tape. When this happens, it will designate
a new stack. Now, as it continues reading the input, it will pop the previously
designated stacks and make sure that the strings on the input tape match the
strings on these stacks while still repeating this procedure from the beginning on
the newly designated stack.

Essentially, this procedure allows the MPDA to read in a sequence of exponen-
tially many separated strings and use the stacks to verify that the strings are all
equivalent modulo reversal. All the while, the MPDA is simulating one DFA per
string or simulating one DFA in reverse per reversal of the string.

Finally, when the procedure is finished and the end of the input is reached, all
the stacks are empty besides one stack with exactly one copy of the string. We
can designate a new stack to simulate the PDA on the one remaining copy of the
string. It is alright for us to designate a new stack to simulate the PDA because
the end of the input was reached and we already verified that all the strings on the
input tape are the same modulo reversal.

If the PDA and all of the DFA’s accept, then the MPDA will accept. Otherwise,
it will reject. In total, we are able to simulate one PDA and O(2k) DFA’s using
only k-co-phase switches. Also, the size of the MPDA will be approximately the
sum of the sizes of the PDA and DFA’s.

E Appendix: Proof of Proposition 12

Non-emptiness for a single deterministic top-down tree automaton is known to
be solvable in polynomial time. Hence, we may choose c such that 1-IET ∈
DTIME(nc).

Let k be given. Let an input consisting of k tree automata with at most m
states each be given. Let n denote the total length of the input’s string encoding.
Take the product of the k tree automata. The resulting automaton will have at
most mk states and can be encoded by a string of length at most nk. Now, we
use the algorithm that decides 1-IET to solve non-emptiness for the product tree
automaton in O(nck) time.

Since k is arbitrary, we have for all k, k-IET ∈ DTIME(nck). Now, we can
apply Proposition 1 to get that {k-IET }k∈N is LBL-reducible to {DT

nk}k∈N.

	Introduction
	Preliminaries
	Complexity Classes
	Acceptance Problems
	Level-By-Level Equivalence

	One PDA and k DFA's
	MPDA's with k-Phase Switches
	k Tree Automata
	Conclusion
	Appendix: Proof of Proposition 1
	Appendix: Proof of Proposition 2
	Appendix: Proof of Proposition 3
	Appendix: Proof of Theorem 9
	Appendix: Proof of Proposition 12

