On the Complexity of Intersection Non-Emptiness Problems

Michael Wehar
University at Buffalo

Summer Talk @ IBM Almaden

June 11, 2016
Overview

1. Classic Problem
2. Adding a Stack
3. Restricted Classes of DFA’s
4. Complexity of Tree Shaped DFA’s
5. Summary
The General Problem

Intersection Non-Emptiness for DFA’s

Given a finite list of DFA’s, is there a string that simultaneously satisfies all the DFA’s?

- We denote this problem by IE_D.
- We use n for the total length of the input’s encoding.
- We use k for the number of DFA’s in the list.
Intersection Non-Emptiness for DFA’s

Given a finite list of DFA’s, is there a string that simultaneously satisfies all the DFA’s?

- Let DFA’s $D_1, D_2, ..., D_k$ be given.
- Construct the Cartesian product DFA D.
- If each DFA has at most m states, then the product has at most m^k states.
- D accepts a string x \iff D_i accepts x for each $i \in [k]$.
- We just need to check if D is satisfiable.

Michael Wehar
Intersection Non-Emptiness Problems
Intersection Non-Emptiness for DFA’s

Given a finite list of DFA’s, is there a string that simultaneously satisfies all the DFA’s?

- It is a classic PSPACE-complete problem [Kozen 77].
- There are two ways of viewing the problem:
 - Directed Reachability: Can I get from a start state to a final state in the product graph?
 - Constraint Satisfaction: Is there a string that satisfies all of the DFA’s?
- We use k-IE_D to denote the problem for fixed k-many DFA’s.
Fixed Parameter Problem

Theorem

Solving k-IE_D is equivalent to simulating a NTM that uses $k \log(n)$ bits of memory.a

aOriginally proven by Kasai and Iwata in 1985.

- Let a $k \log(n)$-space bound NTM M be given.
- Let an input string x of length n be given.
- A computation of M on x is a sequence of configurations.
- Each configuration includes the tape content.
Theorem

Solving k-IE_D is equivalent to simulating a NTM that uses $k \log(n)$ bits of memory.a

aOriginally proven by Kasai and Iwata in 1985.

- The tape is a sequence of $k \log(n)$ bits.
- We can break up this sequence into k regions.
- Each region will consist of $\log(n)$ bits from the tape.
- We build k DFA’s to collectively verify a “computation”.
- We assign one DFA to each region.
Overview

1. Classic Problem
2. Adding a Stack
3. Restricted Classes of DFA’s
4. Complexity of Tree Shaped DFA’s
5. Summary
The Problem Plus a Stack

Intersection Non-Emptiness for DFA’s and One PDA

Given a finite list of DFA’s and one PDA, is there a string that simultaneously satisfies all of the automata?

- We denote this problem by IE_P.
- We use n for the total length of the input’s encoding.
- We use k for the number of DFA’s in the list.
Intersection Non-Emptiness for DFA’s and One PDA

Given a finite list of DFA’s and one PDA, is there a string that simultaneously satisfies all of the automata?

- We can solve IE_P by building a product PDA.
- This variation of the problem is EXPTIME-complete.
- We use $k-\text{IE}_P$ to denote the problem for fixed k-many DFA’s.
We described how to build k DFA’s that verify a $k \log(n)$-space bounded NTM’s computation.

We will show that with k DFA’s and one PDA, we can verify a $k \log(n)$-space bounded AuxPDA’s computation.

An auxiliary PDA has a two-way read only input tape, a stack, and a two-way read/write auxiliary binary work tape.
Fixed Parameter Problem

Theorem

Solving k-IE_P is equivalent to simulating an AuxPDA that uses $k \log(n)$ bits of memory.

- The reduction is essentially the same.
- We build k DFA’s and one PDA to collectively verify an AuxPDA “computation”.
- The auxiliary work tape is split up into k regions.
- We assign one DFA to each region.
- The single PDA is used to keep track of the stack.
Deterministic Polynomial Time is equivalent to Auxiliary Logspace [Cook 71].
- $P = \text{AuxL}$.

A more careful look reveals that n^k-time bounded DTM’s are essentially equivalent to $k \log(n)$-space bounded AuxPDA’s.

Therefore, solving k-$\text{IE}_{\mathcal{P}}$ is equivalent to simulating a DTM that runs for at most n^k time.
Solving k-IE_D is equivalent to simulating a NTM that uses $k \log(n)$ bits of memory.

$\exists c_1 \forall k \ k$-$\text{IE}_D \notin \text{NSPACE}(c_1 k \log(n))$

Solving k-IE_P is equivalent to simulating a DTM that runs for at most n^k time.

$\exists c_2 \forall k \ k$-$\text{IE}_P \notin \text{DTIME}(n^{c_2 k})$
Overview

1. Classic Problem
2. Adding a Stack
3. Restricted Classes of DFA’s
4. Complexity of Tree Shaped DFA’s
5. Summary
Let’s make the problem easier by looking at restricted classes of DFA’s.

We only want classes of DFA’s that are closed under the product construction.

Consider the following restriction examples:

- Graph Structure: DFA’s with an acyclic state diagram.
- Algebraic Structure: DFA’s with a commutative transition monoid.
Definition

A Tree Shaped DFA is a DFA whose state diagram forms a tree (ignoring the dead state).

- Tree shaped DFA's have a root, a height, and they only accept finite languages.
- Tree shaped DFA's are closed under products.
- We focus on tree shaped DFA's over a binary input alphabet.
Notice that the DFA above accepts the finite language:
\{0, 11, 000, 001, 1001, 1011\}.

We can simply represent this language by:
\{0, 11, 00*, 10*1\}.

Michael Wehar
Intersection Non-Emptiness Problems
Overview

1. Classic Problem
2. Adding a Stack
3. Restricted Classes of DFA’s
4. Complexity of Tree Shaped DFA’s
5. Summary
We denote the intersection non-emptiness problem for tree shaped DFA’s by IE_{TD}.

Theorem

IE_{TD} is NP-complete even if each DFA has only 3 final states.

- A witness is any string that is in the intersection.
- The intersection problem is in NP because the witness length is linear in the number of states.
- Hardness follows by a reduction from 3-SAT.
- For a given 3-SAT formula, we can construction a tree shaped DFA for each clause.
Consider a clause \((v_1 \lor \neg v_2 \lor v_4)\) from a 3-SAT instance.

The following DFA is associated with the clause:
Theorem

If 2-IE$_{TD}$ is solvable in $O(n^{2-\varepsilon})$ time, then CNF-SAT is solvable in $O(poly(n) \cdot 2^{(1-\frac{\varepsilon}{2})n})$ time.

- We will define a special kind of reduction from CNF-SAT to Intersection Non-Emptiness.
- Let a CNF formula ϕ with n variables and m clauses be given.
- We construct Tree Shaped DFA’s D_1 and D_2 such that ϕ is satisfiable if and only if $L(D_1) \cap L(D_2) \neq \emptyset$.
- Each DFA has $O((m + n) \cdot 2^{\frac{n}{2}})$ states.
Theorem

If $2\text{-IE}_{\mathcal{T}_D}$ is solvable in $O(n^{2-\varepsilon})$ time, then CNF-SAT is solvable in $O(poly(n) \cdot 2^{(1-\frac{\varepsilon}{2})n})$ time.

- A variable assignment for ϕ is a bit string of length n.
- This string can be broken up into two blocks of $\frac{n}{2}$ bits each.
- Each clause c_i is assigned a clause bit b_i.
- A clause bit b_i is valid if either:
 - $b_i = 0$ and block 1 forces c_i to be satisfied
 - $b_i = 1$ and block 2 forces c_i to be satisfied.
Hardness for 2 Tree Shaped DFA’s

Theorem

If $2\text{-IE}_{\mathcal{T}_D}$ is solvable in $O(n^{2-\varepsilon})$ time, then CNF-SAT is solvable in $O(\text{poly}(n) \cdot 2^{(1-\frac{\varepsilon}{2})n})$ time.

- The DFA’s read in block 1 and block 2 of a variable assignment followed by a string of m clause bits.
- D_1 branches for block 1 and D_2 branches for block 2.
- D_1 verifies that for each i, if $b_i = 0$, then block 1 satisfies c_i.
- D_2 verifies that for each i, if $b_i = 1$, then block 2 satisfies c_i.
- Together, D_1 and D_2 verify that each clause bit is valid and hence each clause is satisfied by some block.
Theorem

$k\text{-IE}_{TD}$ is efficiently reducible to k-Clique.

Let k Tree Shaped DFA's with n states each be given.

Form a graph G with $O(n \cdot k)$ vertices such that each tree branch denotes a vertex.

There is an edge connecting branches b_i and b_j if:

- b_i and b_j come from different DFA's
- b_i and b_j have no bit mismatches.

A k-clique in G represents a valid choice of k branches where there are no mismatches.
Reduction to \(k \)-Hyperclique

We further denote the intersection problem for \(k \) tree shaped DFA’s over an alphabet of size \(c \) by \((c, k)\)-IE\(_T_D\).

Theorem

\((c, k)\)-IE\(_T_D\) is reducible to \(c \)-uniform \(k \)-Hyperclique.

- We construct a \(c \)-uniform hypergraph \(H \).
- The vertices of \(H \) are similarly tree branches.
- A group of \(c \)-many branches forms a hyperedge if:
 - no two branches come from the same DFA
 - at each character position, the \(c \)-ary intersection of possible characters from each branch is non-empty.
- A \(k \)-hyperclique in \(H \) represents a valid choice of \(k \) branches where there are no \(c \)-ary mismatches.
The intersection problem is NP-complete even when each Tree Shaped DFA's has at most 3 final states.

If we can solve $2-\text{IE}_{TD}$ in less than quadratic time, then we get faster algorithms for SAT.

There is an efficient reduction to k-Clique.

Using a known approach for k-Clique, we can solve the intersection problem in $O(n^{0.792k})$ time for $k \geq 3$.

Further, there is a connection between larger alphabets and higher dimensional graphs.
Overview

1. Classic Problem
2. Adding a Stack
3. Restricted Classes of DFA’s
4. Complexity of Tree Shaped DFA’s
5. Summary
We discussed intersection non-emptiness for the following:
- DFA’s
- DFA’s and one PDA
- Tree Shaped DFA’s

We could additionally consider:
- Acyclic DFA’s
- Symmetric Finite Automata
- Unary Finite Automata

We could also consider non-string based automata such as tree automata.